A modification of Einstein-Schrödinger theory which closely approximates Einstein-Weinberg-Salam theory

James A. Shifflett
Department of Physics
WUGRAV Gravity Group
Washington University in St. Louis

shifflet@hbar.wustl.edu

Supported in part by NSF grant PHY 06-52448.

APS Meeting, St. Louis, Missouri
13 Apr, 2008
Comparison of the Lagrangians

• Einstein-Weinberg-Salam theory can be derived from a Palatini Lagrangian
\[\mathcal{L}(\Gamma_{\rho\tau}^\lambda, g_{\rho\tau}, A_\nu) = -\frac{1}{16\pi} \sqrt{-g} \left[g^{\mu\nu} R_{\nu\mu}(\Gamma) + 2\Lambda_b \right] \]
\[+ \frac{1}{32\pi} \sqrt{-g} \, tr(g^{\alpha\mu} g^{\rho\nu} f_{\nu\mu}) + \mathcal{L}_m(g_{\mu\nu}, A_\nu, \psi_{e\nu}, \phi \cdots), \quad (1) \]
where \(A_\nu = I a_\nu + \sigma_i b_i^\nu \) is composed of 2x2 Hermitian matrix components and
\[f_{\nu\mu} = 2 A_{[\mu,\nu]} + \frac{i \sqrt{\alpha}}{2 l_P sin\theta_w} [A_\nu, A_\mu]. \quad (2) \]

• Non-Abelian LRES theory allows nonsymmetric \(N_{\mu\nu} \) and \(\hat{\Gamma}_{\rho\tau}^\lambda \) with 2x2 Hermitian matrix components, excludes \(tr(g^{\alpha\mu} g^{\rho\nu} f_{\nu\mu}) \), and includes a \(\Lambda_z \),
\[\mathcal{L}(\hat{\Gamma}_{\rho\tau}^\alpha, N_{\rho\tau}) = -\frac{1}{16\pi} N^{1/4} \left[tr(N^{-1}_{\mu\nu} R_{\nu\mu}(\hat{\Gamma})) + 4\Lambda_b \right] \]
\[- \frac{1}{4\pi} g^{1/4} \Lambda_z + \mathcal{L}_m(g_{\mu\nu}, A_\nu, \psi_{e\nu}, \phi \cdots), \quad N = \det(N_{\mu\nu}) \quad (3) \]
where the “bare” \(\Lambda_b \approx -\Lambda_z \) so that \(\Lambda = \Lambda_b + \Lambda_z \) matches measurement, and
\[A_\nu = \hat{\Gamma}_{[\nu\sigma]}^\rho / \sqrt{-18\Lambda_b}, \quad g^{1/4} g^{\mu\nu} = N^{1/4} N^{-1(\mu\nu)}, \quad (g_{\nu\mu} = I g_{\nu\mu} \text{ assumed}). \quad (4) \]
The field equations

- The electro-weak field tensor $f^{\nu\mu}$ is defined by
 \[g^{1/4} f^{\nu\mu} = i N^{1/4} N^{-1[\nu\mu]} \Lambda_b^{1/2} / \sqrt{2}, \]
 \[(5) \]

- Ampere’s law is identical to Weinberg-Salam theory
 \[(g^{1/4} f^{\omega\tau})_{,\omega} - \sqrt{-2\Lambda_b} g^{1/4} [f^{\omega\tau}, A_\omega] = 4\pi g^{1/4} j^\tau \]
 \[(6) \]

- This determines the value of Λ_b and Λ_z,
 \[-\Lambda_z \approx \Lambda_b = \frac{\alpha}{8 l_P^2 \sin^2 \theta_w} \sim 1/l_P^2, \]
 \[(7) \]
 and this is consistent with Λ_z being caused by zero-point fluctuations

- Other field equations have tiny extra terms
 \[f_{\nu\mu} = 2A_{[\mu,\nu]} + \sqrt{-2\Lambda_b} [A_\nu, A_\mu] + (f^2)\Lambda_b^{-1/2} + (f'')\Lambda_b^{-1} \ldots \]
 \[(8) \]

 \[G_{\nu\mu} = 8\pi T_{\nu\mu} + tr \left(f^\sigma (\nu f_{\mu})_\sigma - \frac{1}{4} g_{\nu\mu} f^{\rho\sigma} f_{\sigma\rho} \right) + \Lambda g_{\nu\mu} + (f^3)\Lambda_b^{-1/2} + (f'f')\Lambda_b^{-1} \ldots \]
 \[(9) \]
Non-Abelian LRES theory \(\approx\) Einstein-Weinberg-Salam theory

- Extra terms in the field equations are \(<10^{-13}\) of usual terms for worst-case \(|f_{\mu\nu}|\), \(|f_{\mu\nu;\alpha}|\) and \(|f_{\mu\nu;\alpha;\beta}|\) accessible to measurement.

- Usual Lorentz-force equation results from divergence of Einstein equations

- Exact solutions:
 - EM plane-wave solution is identical to that of Einstein-Maxwell theory.
 - Charged solution and Reissner-Nordström sol. have tiny fractional difference: \(10^{-76}\) for \(r=Q=M=M_\odot\), \(10^{-64}\) for \(r=10^{-17}\text{cm}, Q=e, M=M_e\).

- Standard tests

<table>
<thead>
<tr>
<th>test case</th>
<th>fractional difference from Einstein-Maxwell result</th>
</tr>
</thead>
<tbody>
<tr>
<td>periastron advance</td>
<td>(10^{-78})</td>
</tr>
<tr>
<td>deflection of light</td>
<td>(10^{-79})</td>
</tr>
<tr>
<td>time delay of light</td>
<td>(10^{-78})</td>
</tr>
<tr>
<td></td>
<td>(Q=M=M_\odot, r=4M)</td>
</tr>
<tr>
<td></td>
<td>(Q=e, M=M_P, r=a_0)</td>
</tr>
<tr>
<td></td>
<td>(10^{-91})</td>
</tr>
<tr>
<td></td>
<td>(10^{-57})</td>
</tr>
<tr>
<td></td>
<td>(10^{-56})</td>
</tr>
</tbody>
</table>

- Possible Proca field ghost with \(M_{Proca}/\hbar=\sqrt{2\Lambda_b}\sim 1/l_P\), but probably not
Lagrangian has $U(1) \otimes SU(2)$ invariance like Weinberg-Salam theory

- $\mathcal{L} \rightarrow \mathcal{L}$ under $SU(2)$ gauge transformation, with 2×2 matrix U
 \[A_\nu \rightarrow U A_\nu U^{-1} + \frac{i}{\sqrt{2} \Lambda_b} U_{\nu\mu} U^{-1}, \]
 \[\Rightarrow \hat{\Gamma}^\alpha_{\nu\mu} \rightarrow U \hat{\Gamma}^\alpha_{\nu\mu} U^{-1} + 2 \delta^\alpha_{[\nu} U_{,\mu]} U^{-1}, \]
 \[\Rightarrow \hat{R}_{\nu\mu} \rightarrow U \hat{R}_{\nu\mu} U^{-1} \]
 \[N_{\nu\mu} \rightarrow U N_{\nu\mu} U^{-1}, \quad g_{\nu\mu} \rightarrow U g_{\nu\mu} U^{-1}, \quad f_{\nu\mu} \rightarrow U f_{\nu\mu} U^{-1}. \]

- $\mathcal{L} \rightarrow \mathcal{L}$ under $U(1)$ gauge transformation, with scalar φ
 \[A_\nu \rightarrow A_\nu + \frac{1}{\sqrt{2} \Lambda_b} \varphi, \]
 \[\Rightarrow \hat{\Gamma}^\alpha_{\nu\mu} \rightarrow \hat{\Gamma}^\alpha_{\nu\mu} - 2 i I \delta^\alpha_{[\nu} \varphi_{,\mu]}, \]
 \[\Rightarrow \hat{R}_{\nu\mu} \rightarrow \hat{R}_{\nu\mu} \]
 \[N_{\nu\mu} \rightarrow N_{\nu\mu}, \quad g_{\nu\mu} \rightarrow g_{\nu\mu}, \quad f_{\nu\mu} \rightarrow f_{\nu\mu}. \]

- $\mathcal{L}^\ast = \mathcal{L}$ when A_ν and $f_{\nu\mu}$ are Hermitian
 \[\hat{\Gamma}^\alpha_{\nu\mu} = \hat{\Gamma}^\alpha_{\mu\nu}^T, \quad \hat{R}_{\nu\mu} = \hat{R}_{\mu\nu}^T, \quad N_{\nu\mu}^* = N_{\mu\nu}^T, \quad N^* = N, \]
 \[\Rightarrow A^\ast_\nu = A_\nu^T, \quad f^*_{\nu\mu} = f_{\nu\mu}^T, \quad g^*_{\nu\mu} = g_{\nu\mu}^T, \quad g^* = g. \]
Summary of non-Abelian Λ-renormalized Einstein-Schrödinger theory

- \((\text{non–Abelian LRES theory}) \approx (\text{Einstein–Weinberg–Salam theory}) \) with \(|\Lambda_z| \approx \frac{\alpha}{8 l_P^2 \sin^2 \theta_w} \sim \frac{1}{l_P^2} \).

- Extra terms in Weinberg-Salam field equations are \(< 10^{-13}\) of usual terms.

- \(\lim_{|\Lambda_z| \to \infty} (\text{LRES theory}) = (\text{Einstein–Maxwell theory}) \) (Gen.Rel.Grav.(Online First) gr-qc/0801.2307)

- Lagrangian has \(U(1) \otimes SU(2) \) invariance like Weinberg-Salam theory.

- \(\mathcal{L}_m \) contains \(\psi_{\nu}, \phi \) fields, and could also include rest of Standard Model.

- It’s the ES theory but with Hermitian matrix components and a \(\Lambda_z \) term.

- Suggests untried approaches to a complete unified field theory:
 - Larger matrices: \(5 \times 5 \) matrices for \(SU(5) \) or \(U(1) \otimes SU(5) \)?

- For details see gr-qc/0804.1962
Backup charts
The non-Abelian Ricci tensor

- We use one of many nonsymmetric generalizations of Ricci tensor

\[\hat{R}_{\nu\mu} = \hat{\Gamma}_{\nu,\alpha} - \hat{\Gamma}_{(\alpha(\nu),\mu)} + \frac{1}{2} \hat{\Gamma}_{\nu\mu} \hat{\Gamma}_{(\sigma\alpha)} + \frac{1}{2} \hat{\Gamma}_{(\sigma\alpha)} \hat{\Gamma}_{\nu\mu} - \hat{\Gamma}_{\nu\alpha} \hat{\Gamma}_{\sigma\mu} - \hat{\Gamma}_{[\tau\nu]} \hat{\Gamma}_{[\rho\mu]} / 3 \]
(20)

- Because it has important invariance properties

\[R_{\rho\tau}(\hat{\Gamma}_{\nu\mu}^T) = R_{\tau\rho}^T(\hat{\Gamma}_{\mu\nu}) \quad \text{(transposition symmetric)} \]
(21)

\[R_{\rho\tau}(U\hat{\Gamma}_{\nu\mu} U^{-1} + 2\delta_{[\nu}^\alpha U_{,\mu]} U^{-1}) = UR_{\rho\tau}(\hat{\Gamma}_{\nu\mu}) U^{-1} \quad \text{(almost SU(2) invariant)} \]
(22)

\[R_{\rho\tau}(\hat{\Gamma}_{\nu\mu} - 2iI \delta_{[\nu}^\alpha \delta_{,\mu]}^\varphi) = R_{\rho\tau}(\hat{\Gamma}_{\nu\mu}) \quad \text{(U(1) invariant)} \]
(23)

- For Abelian fields the third and fourth terms are the same.

- Reduces to the ordinary Ricci tensor for \(\hat{\Gamma}_{[\nu\mu]} = 0 \) and \(\hat{\Gamma}_{\alpha[\nu,\mu]} = 0 \), as occurs in ordinary general relativity.
The Lagrangian Density Again

• A_ν is defined by
 \[A_\nu = \frac{\hat{\rho}_\nu}{\sqrt{-18\Lambda_b}}. \] \hspace{1cm} (24)

• $\hat{\Gamma}_\nu^\mu$ can be decomposed into $\bar{\Gamma}_\nu^\mu$ with the symmetry $\bar{\Gamma}_\nu^\alpha = \bar{\Gamma}_\alpha^\nu$, and A_ν,
 \[\bar{\Gamma}_\nu^\mu = \hat{\Gamma}_\nu^\mu + \frac{1}{3} (\delta_\mu^\alpha \hat{\Gamma}_{\sigma [\nu} - \delta_\nu^\alpha \hat{\Gamma}_{\sigma [\mu}) \Rightarrow \hat{\Gamma}_\nu^\mu = \bar{\Gamma}_\nu^\mu + 2\delta_\nu^\mu A_\nu \sqrt{-2\Lambda_b}. \] \hspace{1cm} (25)

• The Lagrangian density (3) in terms of A_μ, $\bar{\Gamma}_\nu^\mu$, and $\bar{\Gamma}_\nu^\mu = \hat{\mathcal{R}}_{\nu\mu}(\bar{\Gamma})$ is,
 \[\mathcal{L}(\hat{\mathcal{R}}_{\rho\tau}, N_{\rho\tau}) = -\frac{1}{16\pi} N^{1/4} [tr(N^{-1}\nu\nu(\bar{\mathcal{R}}_{\nu\mu} + 2A_{[\nu,\mu]}\sqrt{-2\Lambda_b}) + 2\Lambda_b[A_\nu, A_\mu]) + 4\Lambda_b] \]
 \[-\frac{1}{4\pi} \Lambda g^{1/4} + \mathcal{L}_m(A_\nu, g_{\mu\nu}, \psi_{e\nu}, \phi, \cdots). \] \hspace{1cm} (26)

• The nonsymmetric Ricci tensor (20) reduces to
 \[\bar{\mathcal{R}}_{\nu\mu} = \bar{\Gamma}_{\nu\mu,\alpha} - \bar{\Gamma}_{\alpha(\nu,\mu)} + \frac{1}{2} \bar{\Gamma}_{\nu\mu} \bar{\Gamma}_{\sigma\alpha} + \frac{1}{2} \bar{\Gamma}_{\sigma\alpha} \bar{\Gamma}_{\nu\mu} - \bar{\Gamma}_{\nu\alpha} \bar{\Gamma}_{\sigma\mu} \] \hspace{1cm} (27)

• We assume the special case $g_{\nu\mu} = \text{Itr}(g_{\nu\mu})/2$ and $\bar{\Gamma}_{\nu\mu} = \text{Itr}(\bar{\Gamma}_{\nu\mu})/2$.
The Einstein Equations

- \(g_{\mu\nu} \) and \(f_{\mu\nu} \) are defined by (with \(c=G=1 \))
 \[
 g^{1/4} g^{\nu\mu} = N^{1/4} N^{-1(\mu\nu)}
 \] (28)
 \[
 g^{1/4} f^{\nu\mu} = i N^{1/4} N^{-1[\nu\mu]} \Lambda_b^{1/2} / \sqrt{2}
 \] (29)

Inverting these definitions gives (after some effort)

\[
N_{(\nu\mu)} = g_{\nu\mu} - 2 \left(f^\sigma (u f_\sigma) - \frac{1}{4} g_{\nu\mu} tr(f^\rho f^\sigma) / 2 \right) \Lambda_b^{-1} + (f^3) \Lambda_b^{-3/2} \cdots \] (30)
\[
N_{[\nu\mu]} = f_{\nu\mu} \sqrt{2} i \Lambda_b^{-1/2} + (f^2) \Lambda_b^{-1} \cdots \] (31)

- \(f_{\mu\nu} \) comes from \(\delta \mathcal{L} / \delta (\sqrt{-NN^{-1(\mu\nu)}}) = 0 \) and \(\tilde{\mathcal{R}}_{[\nu\mu]} = (f'') \Lambda_b^{-1/2} \cdots \) from (43),

\[
N_{[\nu\mu]} = 2 A_{[\mu,\nu]} \sqrt{-2} \Lambda_b^{-1/2} - 2 [A_\nu, A_\mu] - \tilde{\mathcal{R}}_{[\nu\mu]} \Lambda_b^{-1}
\]
\[
\Rightarrow \quad f_{\nu\mu} = A_{\mu,\nu} - A_{\nu,\mu} + \sqrt{-2} \Lambda_b [A_\nu, A_\mu] + (f^2) \Lambda_b^{-1/2} + (f'') \Lambda_b^{-1} \cdots \] (33)

- Einstein equations come from \(\delta \mathcal{L} / \delta (\sqrt{-NN^{-1(\mu\nu)}}) = 0 \),

\[
\tilde{G}_{\nu\mu} = 8\pi T_{\nu\mu} - \Lambda_b tr \left(N_{(\nu\mu)} - \frac{1}{2} g_{\nu\mu} N^\rho_\rho \right) + \Lambda g_{\nu\mu}
\]
\[
= 8\pi T_{\nu\mu} + tr \left(f^\sigma (u f_\sigma) - \frac{1}{4} g_{\nu\mu} f^\rho f^\sigma f_\rho \right) + \Lambda g_{\nu\mu} + (f^3) \Lambda_b^{-1/2} + (f'f') \Lambda_b^{-1} \cdots \] (35)
Weinberg-Salam equivalent of Ampere’s Law

- Maxwell’s equations come from $\delta \mathcal{L}/\delta A_\tau = 0$,

$$\left(g^{1/4} f^{\omega \tau}\right)_\omega - \sqrt{-2\Lambda_b} g^{1/4} [f^{\omega \tau}, A_\omega] = 4\pi g^{1/4} j^\tau,$$

where $f_{\nu \mu} \approx 2 A_{[\mu, \nu]} + \sqrt{-2\Lambda_b} [A_\nu, A_\mu]$ and

$$j^\tau = \frac{-1}{\sqrt{-g}} \frac{\delta \mathcal{L}_m}{\delta A_\tau}.$$ \hfill (37)

- \mathcal{L}_m contains $\psi_{e\nu}, \phi$ fields of Weinberg-Salam theory,

$$j^\tau = Q \bar{\psi}_{e\nu} \gamma^\tau \psi_{e\nu}.$$ \hfill (38)
The Connection Equations

- Relation between $\tilde{\alpha}_{\mu\nu}$ and $N_{\mu\nu}$ like $(\sqrt{-g}g^{\tau\rho})_{,\beta}=0$ comes from $\delta L/\delta \tilde{\alpha}^\beta_{\tau\rho}=0$,

$$tr[(N^{1/4}N^{-1}\rho_{\tau})_{,\beta} + \tilde{\alpha}_{\sigma\beta}N^{1/4}N^{-1}\rho_{\sigma} + \tilde{\alpha}_{\beta\sigma}N^{1/4}N^{-1}\sigma_{\tau} - \tilde{\alpha}_{\beta\alpha}N^{1/4}N^{-1}\rho_{\tau}] = \frac{8\pi\sqrt{2}i}{3}g^{1/4} tr[j^{[\rho}\delta^{\tau]}_\beta] \Lambda_b^{-1/2}. \quad (39)$$

- Solving these equations gives

$$\tilde{\alpha}_{(\nu\mu)} = \frac{I}{2} g^{\alpha\rho}(g_{\mu\rho,\nu} + g_{\rho\nu,\mu} - g_{\nu\mu,\rho}) + (f'f)\Lambda_b^{-1} \ldots, \quad (40)$$

$$\tilde{\alpha}_{[\nu\mu]} = (f')\Lambda_b^{-1} \ldots, \quad (41)$$

$$\tilde{R}_{(\nu\mu)} = R_{\nu\mu} + (f'f')\Lambda_b^{-1} \ldots, \quad (42)$$

$$\tilde{R}_{[\nu\mu]} = (f'')\Lambda_b^{-1/2} \ldots. \quad (43)$$

$\Rightarrow \tilde{R}_{(\nu\mu)} \approx R_{\nu\mu}$ and $f_{\nu\mu} \approx 2A_{[\mu,\nu]} + \sqrt{-2\Lambda_b}[A_{\nu},A_{\mu}]$ with fractional differences $<10^{-13}$ for worst-case $|f_{\mu\nu}|, |f_{\mu\nu;\alpha}|, |f_{\mu\nu;\alpha;\beta}|$ accessible to measurement (e.g. $10^{20}eV, 10^{34}Hz\gamma$-rays).
Proca waves as Pauli-Villars ghosts?

• If wave-packet Proca waves exist and if they have negative energy, perhaps the Proca field functions as a built-in Pauli-Villars ghost

\[\omega_c = \omega_{\text{Proca}} = \sqrt{2\Lambda_b}, \quad -\Lambda_z \approx \Lambda_b = \frac{\alpha}{8l_P^2\sin^2\theta_w} \]

\[\Lambda_z = -\frac{\omega_c^4l_P^2}{2\pi} \left(\begin{array}{c} \text{fermion}\ \text{spin states} \\ \text{boson}\ \text{spin states} \end{array} \right) \]

\[\Rightarrow \left(\begin{array}{c} \text{fermion}\ \text{spin states} \\ \text{boson}\ \text{spin states} \end{array} \right) = \frac{4\pi\sin^2\theta_w}{\alpha} = 412.8 \pm 2 \]

• In this case $4\pi\sin^2\theta_w/\alpha$ or its “bare” value at ω_c should be an integer.

• For the Standard Model the difference in (46) is about 60.

• Non-Abelian LRES theory works for $d \times d$ instead of 2×2 matrices.

• Perhaps some value of “d” is consistent with (46).

• $SU(5)$ almost unifies the Standard Model, how about $U(1) \otimes SU(5)$?