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Mercury Temperature vs. Latitude, Depth and Time
J.A. Shifflett, 12 Nov 2011.

Here we find an equation for the temperature on Mercury vs. latitude, depth and time. We also find the depth
underground required for a given daily temperature fluctuation. And we calculate the range of latitude and depth
where there is room temperature, T =295±1K.
From energy conservation and Fourier’s law (heat flux)=−k∇T , we get the one dimensional heat diffusion equation,

dT

dt
=

1

ρc

d

dz

(
k
dT

dz

)
(1)

where

k = (heat conductivity), (2)

ρc = (density)× (heat capacity) = 106J/m3K, (3)

T = (temperature), (4)

z = (depth), (5)

t = (time). (6)

The heat conductivity is assumed to increase from that of lunar dust in the first 2cm, to lunar regolith within 2cm-5m,
to fractured rock at 5m underground. The analysis is much simplified if we assume that

√
k depends linearly on depth

within this region, which is where the analysis applies. Data from several sources suggests the following expression,
√
k =

√
.001 +

√
.02 z

√
W/mK. (7)

To solve the heat diffusion equation (1) let us rewrite it as follows

dT

dt
=

π

τ

d

dz

(
D2 dT

dz

)
, (8)

where

D =
√
τk/πρc = D0 + βz, (9)

D0 =
√
τk0/πρc = .07m, (10)

k0 = (surface heat conductivity) = .001W/mK, (11)

β = (dimensionless heat conductivity gradient parameter) = .3, (12)

τ = (length of day) = 176 Earth days = 1.52× 107secs. (13)

Using the chain rule and (9), the heat diffusion equation (8) becomes

τ

π
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=
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D
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dz
+D

d
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(
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)
= β

dT

dζ
+

d2T

dζ2
, (14)

where we changed depth variables from z to ζ with

dζ =
dz

D
, ζ =

∫
dz

D0 + βz
=

ln(D0 + βz)

β
− ln(D0)

β
=

1

β
ln

(
1 +

βz

D0

)
, (15)

z =
D0

β
(eβζ − 1) = D0ζ

(
1 +

βζ

2!
+

(βζ)2

3!
. . .

)
. (16)

Assuming a sinusoidal time dependence (which would be roughly true), equation (14) has the solution

T = T̄ + T̂Re[e−αζ−i2πt/τ ] = T̄ + T̂ e−α′ζcos(α′′ζ + 2πt/τ), α = α′ + iα′′, (17)

where insertion into the differential equation gives

−2i = −βα+ α2, (18)

α =
β +

√
β2− 8i

2
=

β

2
+

√√
64+β4 + β2

2
√
2

−
i
√√

64+β4 − β2

2
√
2

= (1− i)

(
1+

iβ2

16
. . .

)
+

β

2
= 1.16− .99i, (19)

T̄ =
1

2
(Tmax + Tmin), T̂ =

1

2
(Tmax − Tmin). (20)
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The conducted power flux traveling into the surface is found using (15) and the derivative of (17) at z=0,

Fconducted(t) = −
[
k
dT

dz

]
z=0

=−k0

[
dζ

dz

dT

dζ

]
z=0

=
k0T̂

D0

[
α′e−α′ζcos(α′′ζ + 2πt/τ) + e−α′ζα′′sin(α′′ζ + 2πt/τ)

]
ζ=0

(21)

=
k0T̂

D0
[α′cos(2πt/τ) + α′′sin(2πt/τ)] , (22)

Fconducted(0)=
α′k0T̂

D0
, Fconducted(τ/2) = −α′k0T̂

D0
. (23)

The emitted power flux is found from the Stephan-Boltzmann law,

Femitted = σT 4 (24)

where

σ = (Stephan−Boltzmann constant) = 5.67× 10−8W/m2K4. (25)

To calculate Tmax we equate the absorbed minus emitted power flux to the conducted power flux at noon (t = 0),

(1−A)cos(ϕ)σT 4
Sun

(
RSun

Rorbit

)2

− σT 4
max =

α′k0T̂

D0
, (26)

where

A = (albedo) = .06, (27)

ϕ = (latitude), (28)

TSun = (Sun surface temperature) = 5785K, (29)

RSun = (Sun radius) = .00465AU, (30)

Rorbit = (Mercury orbital radius) = .31AU at perihelion, .47AU at aphelion. (31)

The conducted power flux is far below the absorbed and emitted power flux (as shown below). Neglecting it gives

Tmax = ((1−A)cos(ϕ))1/4TSun

√
RSun

Rorbit
. (32)

Calculating the max temperatures at perihelion and aphelion gives,

Tmaxp = 698Kcos1/4(ϕ), Tmaxa = 567Kcos1/4(ϕ). (33)

At ϕ=0 these formulas are close to the measured maximum equatorial temperatures of 700K and 600K.
To calculate Tmin we equate the emitted power flux to the conducted power flux at midnight (t = τ/2)

σT 4
min =

α′k0T̂

D0
=

α′k0(Tmax − Tmin)

2D0
=

α′k0Tmax

2D0

(
1− Tmin

Tmax

)
. (34)

Using the approximation (1 + x)1/n ≈ 1 + x/n for x ≪ 1 gives

Tmin =

(
α′k0Tmax

2D0σ

)1/4 (
1− Tmin

4Tmax

)
, (35)

Tmin =

[(
2D0σ

α′k0Tmax

)1/4

+
1

4Tmax

]−1

, for Tmax >

(
3

4

)4/3(
α′k0
2D0σ

)1/3

= 36K. (36)

Substituting (33) into (36) using (11,10,12,19) gives a minimum temperature at perihelion and aphelion

Tminp =

[
cos−1/16(ϕ)

100.5K
+

cos−1/4(ϕ)

2792K

]−1

, Tmina =

[
cos−1/16(ϕ)

95.4K
+

cos−1/4(ϕ)

2268K

]−1

. (37)

At ϕ=0 we get Tminp=97K, Tmina=92K which are close to the measured minimum equatorial temperature of 90K.
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The orbit of Mercury is synchronized with its rotation such that 0◦ and 180◦ longitudes experience midnight and
noon at perihelion whereas 90◦ and 270◦ longitudes experience midnight and noon at aphelion. At perihelion and
ϕ = ±74.5◦ latitude we have

Tmaxp = 502K, Tminp = 88K, T̄p=295K, T̂p = 207K, (38)

dT̄p

dϕ
= −Tmaxp tan(ϕ)

8
− Tminp tan(ϕ)

8

[
1− 3Tminp cos

−1/16(ϕ)

4× 100.5K

]
= −4.15K/ ◦latitude,

dT̄p

dl
= .097K/km. (39)

At aphelion and ϕ = ±52.2◦ latitude we have

Tmaxa = 502K, Tmina = 88K, T̄a=295K, T̂a = 207K, (40)

dT̄a

dϕ
= −Tmaxa tan(ϕ)

8
− Tmina tan(ϕ)

8

[
1− 3Tmina cos

−1/16(ϕ)

4× 95.4K

]
= −1.48K/ ◦latitude,

dT̄a

dl
= .035K/km. (41)

Here we have used

RMercury=(radius of Mercury)= 2.44×103km ⇒ dl/dϕ = −2.44×103×π/180 = −42.586 km/ ◦latitude. (42)

So there are two rings circling Mercury where T̄ = 295±1K, one in each hemisphere. They pass through ±74.5◦

latitude (with .48◦, 21km width) at 0◦ and 180◦ longitude, and dip down to ±52.2◦ latitude (with 1.36◦, 58km width)
at 90◦ and 270◦ longitude. Using (16,17) gives the daily temperature fluctuation T∆ as a function of depth,

T∆ = T̂ e−α′ζ = T̂

(
1 +

βz

D0

)−α′/β

. (43)

Inverting this gives the distance one has to go underground to get T∆ of temperature fluctuation,

z =
D0

β

(
(T∆/T̂ )−β/α′

− 1
)
. (44)

At the latitudes mentioned above, using (10,12,19,38) and T∆=1K we find that the temperature is nearly constant
at room temperature less than a meter below the surface,

z = .7m ⇒ T = 295± 1K. (45)

Finally, let us discuss some approximations used above. First, when calculating Tmax we assumed that

(conducted power flux) = α0k0T̂ /D0 was small compared to (emitted power flux) = σT 4
max. Calculating the

ratio at aphelion gives (conducted power flux)/(emitted power flux) ∼ 10−3, which justifies the approximation.
Another implicit approximation is that (equator to pole heat flux) ∼ α′k0Tmax/RMercury is negligible compared
to (emitted power flux) = σT 4

min. Calculating the ratio using Tmax at ϕ = 0◦ and Tmin at ϕ = 74.5◦ gives
(equator to pole heat flux)/(emitted power flux) ∼ 10−7, which justifies this approximation. Also, throughout
this analysis we have been assuming that the conductivity is independent of temperature, and that the temperature
has a sinusoidal time dependence. In reality the conductivity of the material very close to the surface probably has a
temperature-dependent radiative component, perhaps with k=[1+ (T/315K)3]×.001W/mK according to one source.
In reality the solar light intensity driving function goes as max[0, cos(2πt/τ)] instead of [1 + cos(2πt/τ)]/2, so there
will be higher order modes. Our neglect of the conductivity temperature dependence and higher order modes certainly
introduces error into the analysis, but these approximations are at least partially justified by the agreement of our
Tmax and Tmin values with measurement.
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